
Eur. Phys. J. D 10, 353–362 (2000) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. Path integral simulations are now recognized as a useful tool to determine theoretically the
structure of complex molecules at finite temperatures including quantum effects. In addition to statistical
errors due to incomplete sampling, also systematic errors are inherent in this procedure because of the
finite discretization of the path integral. Here, useful “back of the envelope” estimates to assess the sys-
tematic errors of bond-length distribution functions are introduced. These analytical estimates are tested
for two small molecules, HD+ and H+

3 , where quasi-exact benchmark data are available. The accuracy
of the formulae is shown to be sufficient in order to allow for a reliable assessment of the quality of the
discretization in a given simulation. The estimates will also be applicable in condensed phase path integral
simulations, and the basic idea can be generalized to other observables than those presented.

PACS. 31.15.Kb Path-integral methods – 02.70.Lq Monte Carlo and statistical methods

1 Introduction and motivation

The notion of “the structure” of a molecule is ambiguous,
even if one refers exclusively to isolated non-interacting
molecules, e.g. in the gas phase, and this problem be-
comes more intricate in condensed phases. A host of dif-
ferent structural concepts, as determined from either ex-
periment or calculations, can be defined. Here, we refer
the reader to reference [1] (in particular to Tab. 1.3.3) or
to reference [2] for overviews and precise definitions. Prob-
ably the most widespread theoretical structure concept is
that of the so-called “equilibrium structure” re as deter-
mined from the global minimum of the electronic ground
state potential energy hyper-surface. It is this structure
that is typically reported as a result of quantum-chemical
geometry optimization calculations. However, this is an
inherently classical concept in the sense that it refers to a
structure that classical nuclei would assume at T = 0 K,
i.e. in the absence of any thermal excitations. There is,
of course, no direct experimental access to this quantity
since the nuclei perform quantum-mechanical zero-point
motion even at T = 0 K. More realistic structural in-
dicators are the “average structure” 〈r〉 (obtained from
suitably averaging distance or position operators using
the many-body nuclear wave function, most often in the
quantum-mechanical rotational-vibrational ground state)
or the “most probable structure” rP (defined similarly, but
based on the absolute maximum of the nuclear density) [2].
Further complications arise if excitations have to be taken
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into account in thermal equilibrium at T > 0 K, or even
more so in situations where different modes have different
effective “temperatures” depending on their coupling and
thermalization rate.

Experimentally it is, among others, the so-called
“r0 structure” which is traditionally obtained from con-
verting rotational constants (spectroscopically obtained in
the ro-vibrational ground state) into distances between
nuclei, which are again assumed to behave like point-
particles. More recently, dramatic progress in determin-
ing more directly the real-space structure of molecules
was made in the framework of Coulomb Explosion Imag-
ing (CEI) [3]. Such CEI experiments can yield information
about the diagonal part of the fully correlated many-body
nuclear density matrix of small molecules, and thus they
provide among others access to the average 〈r〉 or the most
probable rP structures and even to the width of the dis-
tribution functions along certain coordinates.

The traditional route towards determining ro-
vibrationally averaged structures (such as average or most
probable structures) is to calculate globally the electronic
ground state Born-Oppenheimer potential-energy hyper-
surface and to solve for the nuclear wave functions in terms
of eigenvectors and eigenvalues using this external poten-
tial. Although very successful and accurate in the limit of
small molecules (see for instance the series of benchmark
calculations [4,5] for H+

3 ) this philosophy becomes soon
intractable for systems with many degrees of freedom. An
interesting alternative for large systems is the approxi-
mate vibrational self-consistent field approach where the
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interactions are obtained “on the fly” from MP2 electronic
structure calculations [6]. Similarly, the diffusion Monte
Carlo technique [7,8] was combined with “on the fly” MP2
calculations [9]. These approaches avoid the bottleneck to
construct a priori a high-dimensional global potential en-
ergy surface.

Another philosophy, the ab initio path integral
method [10], was advocated lately as a technique to tackle
complex many-body quantum problems at finite tem-
peratures. Traditionally, path integral simulations (see
Refs. [11–15] for introductions and reviews) are applied
to systems in the condensed phase or to clusters using
fairly simple interaction potentials. This is no more nec-
essary in the case of the ab initio path integral technique
[10,16–19] since the interactions are calculated from “on
the fly” electronic structure calculations in analogy to
conventional Car-Parrinello simulations [20]. This renders
structural investigations of molecules feasible, e.g. CH+

5

and C2H+
3 molecules [21,22], intra-molecular proton trans-

fer in malonaldehyde [23], protonated water and hydrogen
clusters [24,25], as well as lithium clusters [26] were ana-
lyzed in detail.

A caveat of such ab initio path integral simulations
[10,16–19] where the interactions are determined from “on
the fly” electronic structure calculations is, of course, that
it is numerically more expensive than analogous tradi-
tional simulations using model potentials [11–15]. There-
fore, it would be highly desirable to estimate in advance
the expected systematic error for a certain discretized
Trotter approximation to the continuous path integral
without necessarily taking recourse to straightforward but
expensive convergence studies. This would open the way
to predetermine the discretization based on a given error
criterion without actually doing several converged calcu-
lations with varying Trotter number. Alternatively, one
could estimate the accuracy of a given maximum dis-
cretization used in a particular calculation.

In this paper we present an analytical method to esti-
mate the effect of a finite Trotter discretization on struc-
tural properties of small molecules based on the har-
monic approximation of the mode(s) under consideration.
In order to check the method and to be able to com-
pare with known (quasi-exact) benchmark results we use
published potential energy surfaces for diatomic and tri-
atomic molecules, HD+ and H+

3 . However, the same es-
timates can be applied in more conventional condensed-
phase path integral simulations. For simplicity, we perform
the calculations with the Monte Carlo variant of canonical
path integral simulations rather than with Nosé-Hoover-
chain [27] thermostated molecular dynamics which under-
lies our ab initio path integral technique [10,16–19].

2 Molecular structure and path integral
simulations

Within the Born-Oppenheimer approximation the Hamil-
tonian for a set of N nuclei with masses Mi that move
on the electronic ground state potential energy surface V

reads

Ĥ =
N∑
i=1

p̂2
i

2Mi
+ V ({r̂i}), (2.1)

where ri and pi are the positions and momenta of the nu-
clei; atomic units (a.u.) are used throughout this paper.
Given all eigenvectors {Φk} and the corresponding eigen-
values {Ek} (where k denotes the multi-index required
to completely specify the quantum state) in the respec-
tive electronic potential V ({ri}), the ground state nuclear
structure of the molecule consisting of N nuclei is com-
pletely determined by the N -body ground state density

P ({ri}) = 〈{ri} |Φ0〉〈Φ0| {ri}〉 = |Φ0({ri})|2 , (2.2)

which is the joint-probability to find in real space atom 1
at r1 and atom 2 at r2... and atom N at rN . Excitations
at T > 0 K can be included in a canonical sense and lead
to the N -body thermal density

P ({ri}, β) =
1∑

k exp [−βEk]

×
∑
k

〈{ri} |Φk〉〈Φk| {ri}〉 exp [−βEk] (2.3)

by summing over all states, weighting the different states
with the Boltzmann factor, and normalizing with the par-
tition function; β = 1/kBT . The conventional approach
consists in calculating the wave functions {Φk({ri})}, en-
ergy levels {Ek} and using (2.3) to compute the thermal
density and thus ro-vibrationally averaged structures.

In order to relate this to quantities that we obtain
in the path integral approach we start with the partition
function

Z = Tr exp
[
−βĤ

]
(2.4)

for the canonical equilibrium ensemble. In its well-known
path integral representation this transforms to [28,29]

Z =
∮
D{ri} e−A([ri]), (2.5)

where the path integration is carried out over all closed
paths weighted with the classical Euclidean action

A ([ri]) =

β∫
0

dτ

{(
N∑
i=1

1
2
Mi (ṙi(τ))2

)
+ V ({ri(τ)})

}
(2.6)

of the particular path [ri]. Here, and in the following, we
assume that the nuclei are distinguishable and thus we do
not include their bosonic or fermionic permutation statis-
tics. After discretization of the path integral in position
space one obtains the following discrete representation
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of the partition function as a multidimensional integral

Zn = Nn
∫

d{r(1)
i } · · ·

∫
d{r(n)

i }

× exp

−β n∑
j=1

{(
N∑
i=1

nMi

2β2

(
r(j)
i − r(j+1)

i

)2
)

+
1
n
V
(
{r(j)
i }
)}]

(2.7)

with a known normalization factor Nn that depends on
temperature and masses. In addition, all paths have to
be closed, i.e., periodic boundary conditions in imaginary
time r(n+1)

i = r(1)
i are required to satisfy the trace prop-

erty (2.5). The exact quantum partition function (2.5) is
obtained in the limit Z = limn→∞ Zn. The corresponding
discretized many-body density takes the form

Pn({ri}, β) =
1
Zn

∫
d{r(2)

i } · · ·
∫

d{r(n)
i }

× exp

−β n∑
j=1

{(
N∑
i=1

nMi

2β2

(
r(j)
i − r(j+1)

i

)2
)

+
1
n
V
(
{r(j)
i }
)}]

, (2.8)

and similarly the exact path integral representation
of (2.3) is obtained as P ({ri}, β) = limn→∞ Pn({ri}, β).
Expectation values in the canonical ensemble of operators
Â for a given Trotter number are denoted as 〈Â〉n, and
〈Â〉∞ or 〈Â〉 in short-hand notation corresponds to the
exact value at infinite discretization.

In the discretized representation (2.7) or (2.8) the well-
known polymer isomorphism [30] becomes evident: every
particle i is represented by a closed necklace of n beads
(r(1)
i , r(2)

i , ..., r(n)
i ) in real-space, which is a discretized ap-

proximation to a full path [ri] from ri(0) to ri(β). The
potential V only interacts between beads with the same
Trotter index j, and the kinetic part of the Hamilto-
nian (2.1) is transformed into a harmonic interaction be-
tween neighboring beads r(j−1)

i , r(j)
i , and r(j+1)

i of the
same particle i.

In the remainder of this section a few technical details
of the present simulations are given. The path integral,
while difficult to solve numerically, can be easily evalu-
ated using Monte Carlo techniques [13]. In this approach
the integral is sampled statistically, by moving the beads
{r(j)
i } according to a Metropolis algorithm [31]. Although

this approach works well with the so-called primitive dis-
cretization (2.7) for small discretizations n, it leads to inef-
ficient simulations for large n. The reason is a slowdown of
the path movements through configuration space because
of the strong harmonic forces acting between neighbor-
ing beads which leads to long correlation times. To over-
come these problems, a host of different methods have
been provided [13]. One route is to apply collective moves
in order to update the paths by propagating them directly

in Fourier space. Instead, we have chosen a different ap-
proach to non-local moves as provided by the transforma-
tion to the so-called staging coordinates [17,27].

As a measure of the improvements achieved by this
staging transformation, the efficiency of different com-
putational schemes can be computed as follows (see e.g.
Chap. V.B. in Ref. [13]). Given an operator Â with mean
〈Â〉 variance νA = 〈(Â− 〈Â〉)2〉, one can define a correla-
tion time

κA = 1 + 2
Nmc∑
k=1

〈(Â1 − 〈Â〉)(Âk − 〈Â〉)〉
νA

, (2.9)

where Âk is the operator evaluated at the kth step of the
Markov chain; note that κA ≥ 1. Taking into account the
correlation in the generated Markov chain, the statisti-
cal error ΣA associated with the expectation value of the
operator Â is then given by

ΣA =
√
κAνA
Nmc

, (2.10)

where Nmc is the number of Monte Carlo steps performed
in the simulation. The efficiency ξA of a simulation with
respect to the expectation value of this particular operator
is defined as

ξA =
1

Σ2
ANmcTCPU

=
1

κAνATCPU
, (2.11)

where TCPU is the computational time for each Monte
Carlo step. Thus, ξA measures how quickly the statisti-
cal error of a given quantity decreases as a function of
increasing length of the Markov chain or total computer
time. By using the staging transformation, the efficiency
of the computational scheme could be improved by two
orders of magnitude in the limit of large Trotter numbers
n, see Figure 1.

3 Estimation of systematic discretization
errors

The Trotter discretized version (2.7) of the quantum parti-
tion function (2.5) is of course only exact in the limit of an
infinite discretization n→∞. Thus, any finite representa-
tion which is necessary to carry out numerical simulations
introduces systematic errors in addition to the statistical
errors due to finite and thus incomplete numerical sam-
pling. It is know that these finite-n errors have a leading
order of (β/n)2 for almost all physical observables [32].
The traditional approach to extrapolate expectation val-
ues 〈Â〉n, obtained at a given finite discretization n, to the
correct n→∞ limit is the so-called Trotter scaling

〈Â〉n = 〈Â〉∞ +
c2
n2

+
c4
n4

+ . . . , (3.1)

where 〈Â〉∞ is the extrapolated expectation value and c2
and c4 are constants for a given temperature. Thus, one
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Fig. 1. Efficiency ξx for the expectation value of the position
operator x̂ using the primitive (◦) and the staging (•) algorithm
for test calculations of a one-dimensional harmonic oscillator
(see (3.2) with β = 10, ω = 1 and M? = 1) as a function of
Trotter discretization n.

has to perform separate simulations using several different
discretizations n in order to exploit (3.1).

As already motivated in the introduction, it is highly
desirable to be able to estimate the accuracy of a single
calculation with finite n for a given position-dependent
observable Â without actually knowing the converged an-
swer. This is particularly important in cases where it is not
possible to perform calculations with several discretiza-
tions n because of the rapidly increasing computational
cost of the individual calculations. In such a case, one
approach is to perform a calculation with the largest n
that is affordable with the available computer resources
and to estimate the accuracy based on an approximate
expression. In the following we will introduce such error
estimates in the framework of molecular structure deter-
mination via path integral simulations. Such estimates are
particularly relevant if structures determined by path in-
tegral simulations are compared to measured real-space
structures as provided by the CEI technique [3].

The systematic error in determining the width of
inter-atomic distance distributions in molecules, which is
introduced by using the discretized path integral expres-
sion (2.7), can be estimated easily if one assumes the po-
tential to be harmonic near the minimum. This ansatz,
although clearly not sufficient for actual structure deter-
minations of very floppy molecules, might nevertheless be
sufficient for quick and rough error assessments, see below.
Based on this approximation one can trivially separate the
different vibrational eigenmodes of the molecule and ob-
tain 3N − 6 non-interacting harmonic oscillators and thus
normal modes. For each one of them the Hamiltonian is
of course of the form

ĤHO =
p̂2

2M?
+

1
2
M?ω2x̂2, (3.2)

where M? is the reduced mass of the mode and x denotes
the relative displacement from the minimum. The ana-
lytical expression of the density matrix of the harmonic

oscillator Hamiltonian is known at a given discretization
n (see e.g. Ref. [33]). Its diagonal part (which is related to
inter-atomic distance distributions in molecules) is of the
form

Pn(x, β) = Nn exp

−M?ω

(
1 +

(
ωβ

2n

)2
)1/2

× tanh
(
n arsinh

(
ωβ

2n

))
x2

}
, (3.3)

where

Nn =
(
M?ω

2π

)1/2


1 +

(
ωβ

2n

)2

sinh
(

2n arsinh
(
ωβ

2n

))


1/2

(3.4)

is the factor required to normalize the distribution. For
n→∞ one recovers

P∞(x, β) =
(

M?ω

2π sinh(ωβ)

)1/2

× exp
(
−M?ω tanh

(
ωβ

2

)
x2

)
(3.5)

the exact quantum mechanical result.
The width σn = 〈(x̂− 〈x̂〉n)2〉1/2n of the finite-n distri-

bution can easily be obtained from (3.3) and leads to the
following relative deviation from the exact width σ∞

σ2
n

σ2
∞

=
1(

1 +
(
ωβ

2n

)2
)1/2

tanh
(
ωβ

2

)
tanh

(
n arsinh

(
ωβ

2n

)) ;

(3.6)

note that the mass-dependency drops out at this stage.
One can show that for n ≥ 1 the second factor in (3.6)
is bound between unity and 1.089, the maximum being
reached for n = 1, ωβ/2 = 1.432. For n > 10 the function
is bound between unity and 1.0012 and approaches unity
even closer for larger n. For discretizations n > 10 one can
thus approximate the relation (3.6) further

σn
σ∞
≈
(

1 +
(
ωβ

2n

)2
)−1/4

(3.7)

and obtains an estimate which does only depend on the
vibrational frequency ω of the particular normal mode and
the ratio β/n. This equation can be simplified even more in
the limit ωβ/2n� 1 and one finds with the abbreviation
∆σn = σ∞ − σn a very handy estimate

∆σn
σ∞

≈
(
ωβ

4n

)2

(3.8)
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of the relative Trotter discretization error concerning the
width of a specific eigenmode of a molecule. Using the last
two equations, this error can easily be estimated for every
eigenmode of the molecule if the respective vibrational fre-
quency is (roughly) known. Similarly, one can determine
the Trotter number n which is necessary to perform a sim-
ulation with a desired accuracy.

There are cases where the ground state energy is
known without having much information about the in-
dividual vibrational frequencies. Also for this case simple
but useful estimates can be obtained. If the potential sur-
face is again approximated by a multidimensional oscilla-
tor potential with f degrees of freedom, the energy E0 in
the quantum-mechanical ground state is simply given by

E0 ≈
1
2

f∑
i=1

ωi, (3.9)

where ωi is the vibrational frequency of the ith mode.
Assuming that all frequencies are of a similar magnitude,
i.e. ω ≈ 2E0/f , one can combine the last two equations

∆σn
σ∞

≈
(
E0β

2fn

)2

, (3.10)

whereas one obtains

∆σn
σ∞

≈
(
E0β

2n

)2

(3.11)

in the limit that a single mode of frequency ω dominates
the vibrational spectrum, i.e. ω ≈ 2E0. Combining these
two limits we arrive at the following inequality(

E0β

2fn

)2

. ∆σn
σ∞

.
(
E0β

2n

)2

, (3.12)

where the right-hand-side strictly holds for for all modes,
and the left-hand-side holds for at least the largest eigen-
mode of the molecule. This allows to estimate the Trotter
number n to establish a predefined accuracy ∆σn/σ∞ if
only the ground state energy E0 is known. Since for many
systems either the ground state vibrational energy or even
the vibrational frequencies are known from measurements
or other calculations, one can now easily estimate “on the
back of an envelope” the discretization n that is needed
to push the systematic errors below a certain limit.

It is not clear a priori how well the underlying har-
monic approximation for the ground state potential energy
surface will do in practice. Our error estimates cannot be
expected to be very accurate, but we will demonstrate in
the next section that these crude relations agree nicely
with the results of numerically exact path integral sim-
ulations, even for quite anharmonic potentials at moder-
ate temperatures. Of course the estimates are expected to
work the better the lower the temperature for a given po-
tential energy surface. Thus, we believe that our harmonic
estimation scheme will be useful in future large-scale path
integral calculations of molecular systems.

4 Test applications

In order to test the reliability of the harmonic estimates,
calculations for two small molecules, HD+ and H+

3 , were
carried out. These systems were selected because (i) very
precise ab initio potential energy surfaces are known, (ii)
quasi-exact reference data (energies, bond lengths and
widths) are available, and (iii) these molecules can be mea-
sured via CEI at the Heidelberg Storage Ring TSR [34] so
that a direct comparison with experiment is possible.

4.1 A diatomic molecule: HD+

The calculations for HD+ were done based on the numer-
ical potential of reference [35] provided on a grid with
a spacing of 0.25 a.u. which was interpolated with cubic
splines for easy use; the masses MH = 1.007825 a.m.u.
and MD = 2.0141 a.m.u. were used for all calculations re-
ported in this paper. In order to be able to compare our
simulation with published ground state results we have
chosen a low simulation temperature of T = 50 K, where
one does not expect any vibrational and almost no rota-
tional excitations; the lowest rotational excitation energy
amounts to about 65 K [36]. Because in our path integral
simulations the molecules are allowed to move freely in
three-dimensional space, an energy of 3kBT/2 accounting
for the center of mass motion of the molecule must be
subtracted from the total energy calculated in order to
compare with calculations that do not include this degree
of freedom. The simulations were carried out for several
Trotter discretizations in the range n = 2, ..., 256.

The calculated energy and structure parameters are
compared to results from benchmark calculations [36,37]
of the HD+ ground state in Table 1. Inspecting the aver-
ages obtained from simulations with increasing n one ob-
serves qualitatively a convergence to some specific values.
More quantitatively, one finds that the averages 〈Â〉n de-
termined at a certain Trotter discretization n show a linear
behavior as a function of 1/n2 in the range n = 64, ..., 256.
Thus one can use relation (3.1) truncated at the leading
term in order to extract 〈Â〉∞, which in turn can be com-
pared to the exact benchmark data. These extrapolated
values are identical to the quasi-exact result within the
statistical error.

In particular the structure of this diatomic molecule as
defined by the average bond length 〈r〉 and the width σ of
the associated distribution function agrees with the quasi-
exact benchmark data. This test calculation demonstrates
that path integral simulations are able to produce ground
state data of similar quality as traditional approaches. At
this stage, however, path integral simulations can go be-
yond what is easily accessible by more traditional meth-
ods, namely enter the regime of large excitations. The
complete distribution function of the bond length P (r, β)
is shown in Figure 2 for various temperatures ranging from
50 K to 2500 K. As expected, the 300 K distribution does
not deviate much from the low temperature result at 50 K,
i.e., the 50 K simulation is indeed close to the ground state
of the molecule. Increasing the ro-vibrational excitations
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Table 1. Calculated expectation values for the ground state of HD+ from path integral Monte Carlo simulations at T = 50 K
as a function of the Trotter discretization n compared to quasi-exact benchmark data [36,37] with re = 2.016 a.u.; 〈r〉: average
bond length, σ = 〈(r − 〈r〉)2〉1/2: width of the bond length distribution, ∆σn: estimated root-mean-square error of σ according
to (3.7) using σ∞ = 0.2150 a.u. and ω = 1913 cm−1, 〈Etot〉: total energy including translations and rotations at 50 K, 〈E0〉:
total energy excluding center of mass translations (i.e. 〈Etot〉 − 3/2kBT in the path integral simulation at T = 50 K); the
Trotter extrapolation n→∞ was done using (3.1) to lowest order. The statistical error bars in parenthesis give ± one standard
deviation on the reported digits (e.g. 2.055(2) = 2.055± 0.002) and were obtained according to (2.10). All data are reported in
atomic units.

n 〈r〉 σ ∆σn 〈Etot〉 〈E0〉
4 2.007(1) 0.0804(14) 0.1334 −0.60165(3) −0.60181(3)

16 2.026(2) 0.1513(11) 0.0625 −0.60012(4) −0.60028(4)

64 2.050(1) 0.2065(8) 0.0089 −0.59804(3) −0.59820(3)

128 2.053(1) 0.2125(3) 0.0024 −0.59779(2) −0.59795(2)

256 2.054(2) 0.2145(2) 0.0006 −0.59778(2) −0.59794(2)

n→∞ 2.055(2) 0.2150(2) −0.59774(1) −0.59790(1)

exact 2.0544 0.2148 −0.597898

distance r
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Fig. 2. Bond-length distribution function P (r, β) of HD+ ob-
tained with β/n < 25 at different temperatures as defined in
the figure. The underlying potential is schematically included
by a dotted line for comparison.

leads to a substantial broadening of the distribution and
shifts the average bond length to larger distances. Path
integral simulations are able to quantify these effects.

Having shown that the path integral simulations do
indeed converge to the exact answer if the systematic er-
rors are accounted for by extrapolation, we now focus on
estimating these errors for a specific value of the discretiza-
tion without the need to perform simulations for various
discretizations n. Thus, (3.7) or the more approximate re-
lation (3.8) are now tested as estimates of the discretiza-
tion error for distance distribution functions Pn(r, β). A
detailed comparison between these estimates and the ac-
tual discretization error computed from the simulations
for different temperatures is carried out in Figure 3. For
the analytical error estimates (lines) the vibrational fre-
quency of 1913 cm−1 reported in reference [36] was used.
For the simulation points (symbols) the “exact” width σ∞
at a given temperature was computed by one very ac-
curate calculation with a four-times larger discretization

β/n

∆σ
/σ

50 K

300 K

625 K

1250 K10
-3

10
-2

10
-1

1

10 10
2

10
3

Fig. 3. Relative discretization error ∆σn/σ∞ = (σ∞−σn)/σ∞
of the width of the bond-length distribution Pn(r, β) of HD+

(partly shown in Fig. 2) as a function of β/n at different tem-
peratures. Symbols denote the simulation data for various tem-
peratures as defined in the figure. The solid line shows the esti-
mated error (3.7) and the dashed line is the more approximate
estimated error (3.8), which is valid for small β/n. A value of
ω = 1913 cm−1 was used for the analytical estimates [36].

than the ones shown in the plot, and at 50 K the data for
the ground state (see Tab. 1 and Refs. [36,37]) were used.

The comparison of the numerically exact reference
points from path integral simulations to the full line ob-
tained from (3.7) demonstrates that the harmonic esti-
mate describes the magnitude of the systematic errors on
the width of the distance distribution function very sat-
isfactorily. This is even true at quite high temperatures,
where it is known from Figure 2 that the anharmonicity
of the potential is sampled. The more approximate esti-
mate (3.8) converges to the true answer in the limit of
small β/n as expected.
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Fig. 4. Bond-length distribution function P (r, β) of H+
3 (av-

eraged over all three H–H distances) obtained with β/n < 25
at different temperatures as defined in the figure.

4.2 A triatomic molecule: H+
3

In the following we focus on the triatomic case H+
3 where

a potential energy surface calculated to micro-Hartree ac-
curacy [4] was used; note that now an even more refined
surface is available [5]. The path integral sampling was
performed in the nine-dimensional set of staging coordi-
nates {ui}, whereas the potential was evaluated by trans-
forming (via the Cartesian coordinate set {ri}) to the so-
called MBB representation [38] of the three-dimensional
intra-molecular potential energy surface (using the very
accurate parameters reported in Tab. 7 of Ref. [4]). Fur-
thermore it is assumed that all nuclei are distinguishable
particles. Thus, all effects due to spin statistics are ne-
glected, i.e., there is no symmetry-induced coupling of
nuclear and rotational wave functions which restricts the
accessible rotational quantum states. As a particular con-
sequence the lowest energy ro-vibrational state in the
present path integral simulation is the J = 0 rotational
state in the vibrational ground state. Upon thermal ex-
citation, the rotational states are sequentially populated
without restrictions due to their symmetry.

In order to test our analytic estimates of the system-
atic errors, the distribution of the average bond length of
the H+

3 molecule was computed at various temperatures
using different discretizations n. In Figure 4 the density
distribution functions Pn(r, β) of the bond lengths aver-
aged over the three occurring H–H distances are depicted
in the temperature range from 300 K to 5000 K. A sig-
nificant broadening effect and thus shift of 〈r〉 to larger
average bond lengths is observed as the temperature is
raised. The results obtained for the lowest temperature
300 K and the largest discretization n = 256 are very
close to the quasi-exact results for the A1 (J = 0) ro-
vibrational ground state obtained by Jaquet [39] using the
same potential surface [4], see Table 2. There are, however,
deviations which are small but nevertheless statistically
significant. A first source for the discrepancy, the system-
atic error due to the finite Trotter number n = 256, is
estimated to be much smaller than the statistical error so
that it can be neglected. A second reason could be due

to the fact that the simulations are performed at 300 K,
whereas the benchmark data are obtained at 0 K. The first
vibrationally excited state (with J = 0) is approximately
2500 cm−1 above the ro-vibrational ground state (with
J = 0) [39]. Furthermore, there are many low-lying rota-
tional states in the vibrational ground state, in particular
three excitations are in the range 60–170 cm−1 [39]. The
simulation temperature of 300 K corresponds to about
200 cm−1, so that low-lying rotational excitations in the
vibrational ground state are expected, whereas contribu-
tions due to populating the first vibrationally excited state
are insignificant. Rotational excitations in general result
in an increase of the average bond length 〈r〉 and a broad-
ening of its width σ, which is indeed confirmed by the data
in Table 2. Concerning the estimate of the energy one has
to correct the total energy 〈Etot〉 for translations and ro-
tational excitations at 300 K in order to compare to the
benchmark data. The energy of the center of mass trans-
lations is easily taken into account exactly which leads to
〈Etot−trans〉 = 〈Etot〉 − 3/2kBT . In the absence of data
for the rotational energy levels the rotational energy can
only be estimated roughly by using the classical estimate
of 1/2kBT per degree of freedom. This procedure will of
course overestimate the correction due to rotations, and
thus underestimate 〈E0〉. Thus, 〈Etot−trans〉 is expected
to severely overshoot the benchmark ground state energy,
whereas 〈E0〉 has to be smaller. Comparing the actual
data in Table 2, it seems that the classical correction for
rotations leads to an acceptable underestimation of the
quasi-exact ground state energy, which is even within the
statistical error bar. Whence, these rotational excitation
effects are consistently observed and are the source for
the remaining small discrepancy between the quasi-exact
data at 0 K and their path integral estimates obtained at
300 K.

Having established that the exact ground state data
are reproduced, we now test for the triatomic case the
systematic error estimates derived in Section 3. The rel-
ative error ∆σn/σ∞ of the width of the distance distri-
bution functions should only depend on the ratio β/n
in the limit of large discretizations n according to (3.7).
The results of the actual calculations are plotted in Fig-
ure 5; the limiting width σ∞ was determined at every
temperature using an essentially converged discretization
with nconv = 4nmax, nmax being the largest discretization
shown in the figure. The error estimate (3.7) is shown as
a solid line and the more approximate relation (3.8) is in-
cluded for comparison as a dashed line. For this purpose
ω = 2521 cm−1 from reference [4] is used as the refer-
ence frequency; note that here even a rough frequency
estimate is sufficient. The triatomic case confirms the
conclusion obtained for the diatomic molecule. The ex-
act harmonic estimate (3.7) provides a very good estima-
tion of the systematic errors due to the finite discretiza-
tion of the path integral over the entire range of relevant
temperatures and discretizations. The prediction of the
approximate harmonic estimate (3.8) is obeyed only in
the limit of sufficiently large Trotter numbers for a given
temperature, i.e. a linear behavior with a slope of two
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Table 2. Calculated expectation values for the ground state of H+
3 from path integral Monte Carlo simulations at T = 300 K

compared to quasi-exact benchmark data [4,39] with re = 1.65000 a.u.; 〈r〉: average bond length, σ = 〈(r − 〈r〉)2〉1/2: width
of the bond length distribution, 〈Etot〉: total energy including translations and rotations at 300 K, 〈Etot−trans〉: total energy
excluding center of mass translations (i.e. 〈Etot〉 − 3/2kBT in the path integral simulation at T = 300 K), 〈E0〉: total energy
excluding center of mass translations and classical rotations (i.e. 〈Etot〉 − 3kBT ). The statistical error bars in parenthesis give
± one standard deviation on the reported digits (e.g. 1.726(2) = 1.726 ± 0.002) and were obtained according to (2.10). The
systematic error ∆σn of σ due to the finite discretization is estimated using (3.7) with a vibrational frequency ω = 2521 cm−1

and found to be of the order of ± 10−5 a.u., which is small compared to the statistical error in this calculation. Lengths are
reported in atomic units, energies in cm−1.

n 〈r〉 σ 〈Etot〉 〈Etot−trans〉 〈E0〉
256 1.726(2) 0.2036(1) 4920(75) 4620(75) 4320(75)

exact 1.72170 0.203389 4361.816
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Fig. 5. Relative discretization error ∆σn/σ∞ = (σ∞−σn)/σ∞
of the width of the bond-length distribution Pn(r, β) of H+

3

(partly shown in Fig. 2) as a function of β/n at different tem-
peratures. Symbols denote the simulation data for various tem-
peratures as defined in the figure. The solid line shows the esti-
mated error (3.7) and the dashed line is the more approximate
estimated error (3.8), which is valid for small β/n. A value of
ω = 2521 cm−1 was used for the analytical estimates [4].

is obtained in the double-logarithmic representation cho-
sen for Figure 5. Thus, in spite of the fact that the po-
tential energy surface of H+

3 is already quite anharmonic
(note that re = 1.65000 a.u. [4] whereas 〈r〉 = 1.72170 a.u.
in the A1 (J = 0) ground state and 〈r〉 = 1.76707 a.u. in
the E (J = 0) first vibrationally excited state [39], see also
Tab. 2 and the broadening effects in Fig. 4) we find that
these harmonic estimates are useful to assess the system-
atic discretization error in path integral simulations.

Finally, the usefulness of the relation (3.12), which as-
sumes that only the ground state energy of the molecule
is known in order to estimate the systematic finite-
discretization error of bond length distributions, is as-
sessed. According to (3.12) the discretization error is
expected to approximately lie in a certain band for dis-
cretizations that satisfy β/n � E0. Compared to the di-
atomic case, there is not only one bond length present
in this molecule. For H+

3 , the following three symmetry-
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Fig. 6. Relative discretization error ∆σn/σ∞ = (σ∞−σn)/σ∞
of the width of the bond-length distribution Pn(r, β) for the rx
and ra normal modes (4.1) of H+

3 as a function of β/n at differ-
ent temperatures. Symbols denote the simulation data for two
temperatures as defined in the figure. The dashed line is the es-
timated upper limit (3.11) and the solid line is relation (3.10),
see also (3.12). A value of E0 = 4362 cm−1 was used for the
analytical estimates [4].

adapted coordinates

ra =
1√
3

(r12 + r23 + r31)

rx =
1√
6

(2r12 − r23 − r31)

ry =
1√
2

(r23 − r31) , (4.1)

can be used, where rij denotes the distance between the
ith and jth hydrogen atom. In Figure 6 the prediction
is tested against numerical calculations separately for the
distances ra and rx at two different temperatures. It is
found that all deviations are smaller than the predicted
upper limit (dashed line, according to (3.11)), and in ad-
dition they are rather close to the lower solid line given
by (3.10). This behavior is easily understood because the
three harmonic frequencies in H+

3 are (for the present pur-
pose) of similar magnitude so that (3.10) is the better ap-
proximation. In summary, also the estimate (3.12) that
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is solely based on the ground state energy turns out to
describe quite well the actual data and can be used to
assess discretization errors in path integral simulations.

5 Conclusions

Path integral simulations provide a powerful way to deter-
mine the structure of molecules in their ground state and
also in thermal equilibrium with the surrounding black
body radiation. They automatically include the coupling
between rotations and vibrations, taking into account the
full nuclear Hamiltonian. For the path integral calcula-
tions performed in this study, the only non-trivial in-
put needed is a global potential energy surface for the
molecule, which can be obtained by standard quantum
chemical calculations. Note that in the case of ab initio
path integral simulations [10,16–19] not even the potential
energy surface is required a priori. A particularly appeal-
ing feature of such path integral simulations is that the
diagonal part of the many-body nuclear density matrix,
which contains exhaustive information about the real-
space structure of molecules, is obtained as an immedi-
ate result of these calculations. The many-body nuclear
density can be compared directly to data obtained from
Coulomb Explosion Imaging experiments [3].

The main focus of this paper is to study the system-
atic errors of the density matrix and in particular of bond
length distribution functions which are introduced into
path integral calculations due to the necessarily finite dis-
cretization of the continuous path integral. Estimating
these errors in advance is highly desirable because con-
vergence studies of the path integral and proper Trotter
scaling can be prohibitively expensive. Two approaches
to address this problem were introduced, both relying on
the harmonic approximation. Simple and easy to use an-
alytical formulae to estimate these errors in path integral
structure calculations were derived, the only necessary in-
put being approximate frequencies and/or energies. These
relations were tested and validated by explicit calcula-
tions for diatomic (HD+) and triatomic (H+

3 ) molecules,
for which quasi-exact benchmark data are available and
where detailed convergence studies are also easily feasi-
ble. With these data in hand it was also demonstrated that
path integral simulations lead in the low-temperature limit
to ground state structures that agree quantitatively with
those obtained by more traditional methods. It was found
that harmonic estimates for the systematic discretization
errors work astonishingly well even in the case of quite
anharmonic potentials. Thus, the analytical formulae pre-
sented in Section 3 allow for quick a priori “back of the
envelope” estimates of the discretization needed in order
to push the systematic error of a path integral simulation
below a certain limit of accuracy without performing con-
vergence tests. Finally, we stress that these or similar error
estimates will not only be useful for path integral simula-
tions of molecules, but also of condensed matter systems
such as solids or liquids.

It is a great pleasure to thank Ralph Jaquet for sharing with
us his insights and results concerning H+

3 , Zeev Vager for use-
ful and stimulating discussions, Roland Wester for the spline-
interpolated HD+ potential surface, and last but not least Dirk
Schwalm for his interest and support of this study.
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